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Abstract

Introduction: Glutamate dysregulation may be involved in the physiology of schizophrenia, and NMDA antagonists seem to be effective in its
treatment. Our group studied the efficacy of amantadine (AMA) in preventing ketamine (KET)-induced effects in an animal model of schizophrenia.
Methods: Adult Wistar rats received 10 mg/kg AMA for 10 days, followed by 7 days of 25 mg/kg KET ip. Thirty minutes after the last injection,
rats were placed in an open-field apparatus for 60 minutes and killed by decapitation afterwards. Amygdala, hippocampus, prefrontal cortex
and striatum were isolated and analyzed for creatine kinase (CK) and respiratory chain enzyme activities. Results: KET increased crossings and
reduced grooming, which was not prevented by AMA. KET also increased stereotypic movements, which was partially prevented by AMA. As for CK
activity, KET increased it in the prefrontal cortex, striatum and amygdala, and AMA prevented it only in prefrontal cortex and striatum. The activity
of complex [ was not altered by KET, however, AMA+KET increased it in the striatum and amygdala. KET increased the activity of complex II in the
striatum as well, whereas AMA+KET increased it in hippocampus, prefrontal cortex, and striatum. KET did not alter complex I-III activity, whereas
AMA+KET increased it in hippocampus and amygdala. AMA+KET also increased complex IV activity in hippocampus and striatum, whereas KET
had no effect on this activity. Conclusion: AMA did not prevent most of KET-induced alterations. New animal models should be employed in the
study of AMA as a potential novel drug for schizophrenia.
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Resumo

Introducao: A desregulagdo glutamatérgica pode estar envolvida na fisiopatologia da esquizofrenia, e antagonistas de NMDA parecem ser efetivos
no seu tratamento. Nds avaliamos a eficacia da amantadina (AMA) em prevenir efeitos induzidos pela quetamina (KET) em um modelo animal de
esquizofrenia. Métodos: Ratos Wistar adultos receberam 10 mg/kg de AMA por 10 dias, seguidos de 7 dias de KET 25 mg/kg ip. Trinta minutos
apo6s a ultima injegdo, os ratos foram posicionados em um campo aberto por 60 minutos, seguido de decapitacdo. Amigdala, hipocampo, cdrtex
pré-frontal e estriado foram isolados e analisados para creatina quinase e atividade das enzimas da cadeia de transporte de elétrons. Resultados:
A KET aumentou os cruzamentos e o comportamento de grooming, o que nao foi prevenido pela AMA. KET também aumentou os movimentos
estereotipicos, o que foi parcialmente prevenido pela AMA. KET aumentou a atividade da creatine quinase no cdrtex pré-frontal, estriado e
amigdala, tendo sido prevenida pela AMA apenas no cortex pré-frontal e estriado. A atividade do complexo I ndo foi alterada pela KET; no entanto,
AMA+KET aumentaram esse parametro no estriado e na amigdala. KET aumentou a atividade do complexo II no estriado, enquanto AMA+KET a
aumentaram no hipocampo, cértex pré-frontal e estriado. KET ndo alterou a atividade do complexo I-1II, enquanto AMA+KET a aumentaram no
hipocampo e amigdala. AMA+KET também aumentaram a atividade do complexo IV no hipocampo e estriado, enquanto KET nao teve efeitos na sua
atividade. Conclusdo: AMA nio preveniu a maioria das altera¢des induzidas pela KET. Novos modelos animais deverao ser utilizados para estudar
a AMA como uma nova droga para esquizofrenia.
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Introduction

Schizophrenia (SZ) is a highly debilitating psychiatric
disorder with an estimated prevalence of approximately
1-1.5%'. Its presentation includes positive symptoms
(hallucinations and delusions), negative symptoms (social
withdrawal, affective flattening, avolition and blunted
affect) and cognitive impairments?. Treatment of patients
with SZ includes acute and maintenance management,
including a wide range of typical and atypical antipsychotics
whose efficacy is not generalized among patients?. Effective
maintenance treatment can decrease the frequency and
the severity of the illness’ episodes, reduce its morbidity
and mortality, and maximize the psychosocial functioning
and the quality of life of patients®. Nevertheless, several
patients are refractory to medication, and some of the
symptoms persist even when the adherence is considered
good*. In this sense, further studies are warranted in
the search for novel and more effective drugs for the
maintenance treatment of SZ.

Despite several studies attempting to search the
neurobiological underpinnings of SZ, its pathophysiology is
not completely understood. It seems to include a wide range
of mechanisms, from genetic markers to oxidative stress>'*.
Neuroanatomical findings report a decrease in whole
brain and grey matter volume!*%>, as well as a progressive
increase in ventricular and cortical cerebrospinal fluid
volumes in first-episode schizophrenic patients>?®,
Taken together, these findings suggest the occurrence of
neurodegenerative-like mechanisms in patients.

Among possible mechanisms leading to neuronal damage,
disturbs in brain energy metabolism have been reported as
important factors. Impaired energy metabolism can lead
to neuronal death by decreasing ATP levels and ultimately
leading to apoptosis®. Of note, mitochondrial dysfunction
with subsequent alterations in respiratory chain complexes
has been implicated in the pathophysiology of SZ**%, Briefly,
itincludes mitochondrial hypoplasia, altered mitochondrial-
related gene expression, and impairment of the oxidative
phosphorylation system in patients?*?2, Moreover,
abnormal mitochondrial morphology, proportion and
density have already been found in the brain of individuals
with SZ*. Energy metabolism parameters include the
assessment of mitochondrial respiratory chain enzymes
and creatine kinase (CK) activity, which participate in
energy homeostasis and indicate the level of ATP demand
in a sample. In this vein, evidences suggest that known
antipsychotic drugs modulate mitochondrial functions?,
suggesting the importance of enhancing mitochondrial
parameters in the effective treatment of SZ.

Given the complexity of the disorder and the need
for further understanding its neurobiology, different
animal models of SZ have been employed®. In rats and
monkeys, noncompetitive NMDA antagonists, including
phencyclidine and ketamine (KET), produce a range of
behavioral abnormalities that resemble symptoms of SZ

in humans??®, Treatment with KET has been shown to
cause individual psychosis in patients with SZ in symptom
remission??°, and the use of this substance is also employed
to assess positive and negative symptoms in healthy
volunteers®. We and others have used a chronic treatment
with subanesthetic doses of KET in rats as an animal model
of SZ?533 In this model, KET has been shown to induce
stereotypic movements and significant social deficits in
different treatment schemes®*34. Altogether, this model
has been shown to present predictive, construct and face
validity?®%>3¢ and allows for its use in testing novel potential
drugs for SZ.

Among newly tested drugs, memantine, a weak non-
selective NMDA receptor antagonist, has been reported
to improve cognitive, positive and negative symptoms on
a randomized placebo-controlled clinical trial as adjunctive
to clozapine for treatment-refractory patients with Sz*7.
More recently, amantadine (AMA), a memantine’s derivate,
has improved clinical response to negative symptoms in
a case series®®, and was effective in the treatment of five
patients with SZ or schizoaffective disorder (SZA) and acute
catatonia®*. AMA may act like memantine by chronically
reducing neuronal oxidative stress of treated patients, thus
decreasing aggression to neurons and neuronal death, as
well as modulating mitochondrial functions?.

Based on previous findings, AMA may be a promising drug
to be further tested in SZ. A better understanding of its
mechanism of action in preclinical studies may point to
relevant targets in SZ and to the proposal of novel potential
drugs for its treatment. To that end, we aimed to evaluate
the efficacy of AMA in preventing the effects of KET on
behavior, mitochondrial respiratory chain enzymes and CK
activity in an animal model of SZ.

Materials and methods

This study was approved by our local ethics committee and
performed in accordance with the recommendations of
NIH Guide for the Care and Use of Laboratory Animals and
Sociedade Brasileira de Neurociéncias e Comportamento
(SBNeC).

Animals

Adult male Wistar rats (weight 250-300 g) were obtained
from our breeding colony (Central Animal House of
Universidade do Extremo Sul Catarinense) and caged in
groups of five with food and water available ad libitum.
They were maintained on a 12-h light/dark cycle (lights on
at 7:00 am), at a temperature of 229C + 1°C.

Treatment

AMA was administered ip at 10 mg/kg for 10 days, followed
by 7 days of subanesthetic ip administrations of 25 mg/kg
KET (31, 41). Saline (SAL) injections were performed as
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controls for both AMA and KET, totalizing four experimental
groups (n = 12 per group): SAL+SAL, SAL+KET, AMA+SAL,
and AMA+KET. Thirty minutes after the last injection, rats
were placed in an open-field apparatus and evaluated as
described below.

Behavioral evaluation
Open-field task

Locomotor activity was assessed in a 50 x 25 x 50 cm open-
field surrounded by walls made of brown plywood with
a frontal glass wall. The floor of the arena was divided
into 12 equal rectangles by black lines. The animals were
gently placed on the left rear rectangle and were allowed
to explore the arena for 60 minutes. Locomotor activity
was constantly monitored by a system installed in the
arena containing six parallel bars, each of which contained
16 infrared sensors that detect the rat’s exact position
and movement, enabling a detailed analysis of each
animal’s behavior. Information detected by the sensors is
transmitted to a computer in which the animal’s activity
is recorded for 5 min by a dedicated software (database:
Open Source version Interbase 6.01). Number of crossings
and grooming behavior were counted.

Stereotypy

Stereotypy was defined as rapid, repetitive head and
forelimb movements. This parameter was analyzed at the
same time and place as the locomotor activity. Stereotypy
is considered by the software as an instable movement any
time when repetitive movements are recorded in sequel
readings, without alteration in the animals’ mass center.
The possible units of measurement to be considered are
mm (millimeters), cm (centimeters) and in (inches).

Tissue and homogenate preparation

Animals were killed by decapitation 60 min after behavioral
analyses. Brains were removed and hippocampus, prefrontal
cortex, striatum and amygdala were homogenized (1:10,
w/V) in SETH buffer, pH 7.4 (250 mM sucrose, 2 mM EDTA,
10 mM Trizma base, 50 IU/ml heparin). Homogenates were
centrifuged at 800 x g for 10 minutes and the supernatants
were kept at -702C until they were used for enzyme activity
determination.

CK activity assay

CK activity was measured in brain homogenates pre-treated
with 0.625 uM lauryl maltoside. The reaction mixture
consisted of 60 uM Tris-HCIl, pH 7.5, containing 7 uM
phosphocreatine, 9 mM MgSO, and approximately 0.4-1.2
mg protein in a final volume of 100 uL. After 15 min of pre-
incubation at 379C, the reaction was started by the addition
of 0.3 mmol of ADP plus 0.08 umol of reduced glutathione.
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The reaction was stopped after 10 min by the addition of 1
pmol of p-hydroxymercuribenzoic acid. The creatine formed
was estimated according to the colorimetric method of
Hughes (1962)*2. The color was developed by the addition
of 100 uL 2% p-naphtol and 100 pL 0.05% diacetyl in a final
volume of 1 mL and read spectrophotometrically after 20
min at 540 nm. Results were expressed as nmol x (min x
mg protein)™.

Respiratory chain enzyme activity

Complex|,or NADH dehydrogenase, was evaluated using the
method described by Cassina and Radi (1996)* by the rate
of NADH-dependent ferricyanide reduction at 420 nm. The
activity of succinate:ubiquinone oxidoreductase (complex
I1) was determined by the method described by Fischer and
colleagues (1985)*, following the decrease in absorbance
due to the reduction of 2,6-dichloroindophenol at 600
nm. Complex II-lll activity was measured as cytochrome c
reduction from succinate at 550 nm and 379C according
to the method of Birch-Machin and colleagues (1994)%.
The activity of cytochrome c oxidase (complex V) was
assayed according to the method described by Rustin and
colleagues (1994)%, in which the decrease in absorbance
due to the oxidation of previously reduced cytochrome c
at 550 nm is followed. The activities of the mitochondrial
respiratory chain complexes were expressed as nmolL x
(min x mg protein) .

Protein content

Protein content was determined by the method described
by Lowry and colleagues (1951)* using bovine serum
albumin as standard.

Statistical analysis

Data were analyzed using the software Statistical Package
for the Social Sciences (SPSS Inc, Chicago, IL), version 18.0.
Activities of CK and of the respiratory chain complexes
were all fitted into a standard curve distribution, and
were therefore subjected to parametric analyses. Groups
were compared by one-way ANOVA, followed by post-
test of Tukey. P-values < 0.05 were considered statistically
significant. Number of crossings, grooming behavior, and
stereotypy data were not fitted into a standard curve
distribution, and were analyzed by Kruskal-Wallis test,
followed by Mann-Whitney comparisons between groups.
P-values < 0.0125 were considered statistically significant
after Bonferroni corrections for multiple comparisons.

Results
Open-field task

KET significantly increased the number of crossings (U= 0,
Z=-4.160, p < 0.001) when compared to the control group.
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However, this increase was not prevented by the treatment
with AMA on the AMA+KET group (U=42,Z2=-1.732,p =
0.089, compared to SAL+KET; U =6.5,Z=-3.782, p < 0.001,
compared to AMA + SAL). No other differences were found
between groups.
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Grooming behavior

Grooming behavior was significantly reduced in SAL+KET (U
=26.5,Z =-2.636, p = 0.008) when compared to control.
AMA treatment partially prevented this reduction given that
AMA+KET group did not significantly differ from SAL+SAL (U
=31, Z=-2.377, p = 0.017), but no difference was found
between SAL+KET and AMA+KET (U = 68, Z = -0.233, p =
0.816). No other differences were found between groups.
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Table 1 Behavioral data from rats in the KET-induced animal
model of schizophrenia

SAL +SAL AMA+SAL SAL+KET AMA+KET p*
Crossings a 46 50.5 215 163 <
(32-69) (42.25-74.25) (159 — 264.25) (102.75 —222.75) 0.001
Grooming a 1.5 10 2.5 4 0.01
(5-2125) (3-28.75) (0.25-6.75)  (0.25-7)
Stereotipy a [¢] 0 3 ¢} 0.004
(0-0) (0-0.75) (0-3) (0-2)

2 Data expressed as median (interquartile range).
*Independent samples Kruskal-Wallis test.

Stereotypic movements

KET significantly increased stereotypic movements when
compared to control (U = 24, Z = -3.323, p = 0.001), and
AMA treatment partially prevented this behavior, given
that AMA+KET did not significantly differ from the control
group (U =42,Z =-2.44, p = 0.015) or from SAL+KET (U =
58, Z =-0.965, p = 0.335). No other differences were found
between groups.
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CK activity

Treatment with KET increased CK activity in the prefrontal
cortex (F(3, 18) = 8.253, p = 0.001) and in striatum (F(3,
19) = 8.251, p = 0.001), when compared to the control
group, and in the amygdala (F(3, 17) = 10.983), p < 0.001),
when compared to AMA+SAL (Figure 1). This increase
was prevented by AMA in prefrontal cortex and striatum,
but not in the amygdala (p = 0.323, when compared to
SAL+KET). In hippocampus, no differences could be found
between groups. AMA treatment per se did not alter CK
activity when compared to control.
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Figure 1 Creatine kinase activity was measured by a colorimetric
method in hippocampus, prefrontal cortex, striatum and amygdala
region. Data were analyzed by ANOVA followed by Tukey test (n
= 5-7 per group). *Different from SAL+SAL, p < 0.05. #Different
from AMA+SAL, p < 0.05. Results are expressed as nmol/(min x
mg protein).
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Complex |

KET treatment per se did not alter complex | activity (Figure
2). However, when combined with AMA, it increased
the enzyme activity in the striatum (F(22, 3) = 2.948, p =
0.045) and in the amygdala (F(3, 15) = 13.995, p <0.001).
No further differences were found between groups in the
hippocampus or in the prefrontal cortex.
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Figure 2 Complex | activity was measured in hippocampus, prefrontal
cortex, striatum and amygdala region. Data were analyzed by ANOVA
followed by Tukey test (n = 5-7 per group). *Different from SAL+SAL,
p < 0.05. #Different from AMA+SAL, p < 0.05. Results are expressed
as nmol/(min x mg protein).

Complex Il

KET treatment increased the activity of complex Il in
the striatum (F(3, 21) = 7.153, p = 0.002), whereas the
combination of AMA+KET increased this activity in
hippocampus (F(3, 23) =5.171, p = 0.007), prefrontal cortex
(F(3, 18) =5.041, p = 0.01), and striatum (F(3, 21) = 7.153,
p = 0.002). No differences were found between groups in
the amygdala.
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Figure 3 Complex Il activity was measured in hippocampus, prefrontal
cortex, striatum and amygdala region. Data were analyzed by ANOVA
followed by Tukey test (n = 5-7 per group). *Different from SAL+SAL,
p < 0.05. #Different from AMA+SAL, p < 0.05. Results are expressed
as nmol/(min x mg protein).
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Complex II-11I

Whereas KET alone did not change complex II-lll activity in
any of the brain regions, AMA+KET increased its activity in the
hippocampus (F(3, 22) = 5.166, p = 0.007) and in the amygdala
(F(3, 18) = 5.54, p = 0.07). No differences were found between
groups in the prefrontal cortex and in the striatum.
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Figure 4 Complex II-lll activity was measured in hippocampus,

prefrontal cortex, striatum and amygdala region. Data were
analyzed by ANOVA followed by Tukey test (n = 5-7 per group).
*Different from SAL+SAL, p < 0.05. #Different from AMA+SAL, p <
0.05. Results are expressed as nmol/(min x mg protein).

Complex IV

AMA+KET treatment increased complex IV activity in the
hippocampus (F(3, 16) =8.31, p =0.001) and in the striatum
(F(3, 14) = 5.087, p = 0.014), whereas KET treatment per
se had no effect on the enzyme activity. No differences
between groups were found in the prefrontal cortex and in
the amygdala.
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Figure 5 Complex IV activity was measured in hippocampus,
prefrontal cortex, striatum and amygdala region. Data were analyzed
by ANOVA followed by Tukey test (n = 5-7 per group). *Different from
SAL+SAL, p < 0.05. #Different from AMA+SAL, p < 0.05. Results are
expressed as nmol/(min x mg protein).
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Discussion

Among several newly tested drugs for SZ, nonselective
NMDA antagonists appear to have an important potential
for its successful treatment. In our animal model of SZ
induced by KET treatment, AMA partially prevented the
KET-induced stereotypy and KET-induced reduction of
grooming behavior, as well as prevented the increase in CK
activity in prefrontal cortex and in striatum. However, AMA
did not prevent KET-induced increase in complex Il activity,
and acted in a synergistic way with KET to increase the
activities of other respiratory chain enzymes in different
brain regions. These results suggest that AMA is not fully
effective in preventing KET effects in this animal model of
SZ, and would indicate a synergic action of both drugs in
the modulation of the respiratory chain enzymes.

Sub-anesthetic KET administrations have been consistently
employed as a valid animal model of SZ. Given its action
as an NMDA antagonist, it can produce hallucinations
and paranoia in humans*®, which are similar to positive
symptoms. As discussed elsewhere®#%°, this model mimics
both positive and negative symptoms of the disorder, as
well as its cognitive impairments, which makes it suitable
for the test of potential new drugs for the treatment of
SZ. Of note, KET effects include changes in dopaminergic,
glutamatergic and serotoninergic systems, which ultimately
lead to increased hippocampal D2 receptors, decreased
glutamatergic receptors in the PFC, and increased density
of dopamine and serotonin transporters in hippocampus,
striatum and PFC3®. Each of these effects may differentially
influence KET-induced behavioral features, and may be
responsible for the modulation of mitochondrial functions,
as previously shown?3?,

Behavioral testing showed that KET significantly increased
the number of crossings assessed by the open-field test,
as well as reduced grooming behavior. These KET-induced
features have also been reported in other studies®*?, and
suggest relevant face validity for this animal model of SZ.
However, our results show that AMA could not fully prevent
these behavioral effects, which may account for a lack of
predictive validity for this model. KET also significantly
increased stereotypic movements, which was only partially
prevented by AMA. Clinical data points to an efficacy of
memantine and AMA in improving positive and negative
symptoms in clozapine treatment refractory patients with
SZ373°, which suggests that the effects of AMA might be
more related to reversal of symptoms in a long-term course
of psychosis as an adjunctive treatment to antipsychotics.
As far as we know, AMA is an NMDA antagonist and
could theoretically induce psychotic symptoms or even
worsen them in patients with SZ°. Clinical data show that
memantine and AMA act in very unique and unstable
ways in glutamatergic, dopaminergic and serotoninergic
pathways, and their use in monotherapy in patients with
neuropsychiatric disorders such as SZ, Parkinson disease,
and bipolar disorder could indeed worsen psychotic

symptoms®%>3, On the other hand, as AMA appears to act via
several pharmacological mechanisms rather than uniquely
on NMDA receptors, none of them has been identified as
its main mode of action, and it is not clear which of these
mechanisms is the most relevant at the therapeutic dose
of the drug. Moreover, a KET treatment mimic mostly the
acute phase of the disease, and it is possible that AMA may
be more efficient in the treatment of chronic SZ. Further
studies with different dosages of AMA in different models
of SZ are necessary to elucidate this hypothesis®**’.

The lack of efficacy of AMA in preventing KET effects could
also be seen in the respiratory chain complexes, where in
most cases the alteration was found only in the combined
AMA+KET group, and not in rats treated only with KET.
Interestingly, there seems to be a synergic effect of both
drugs in all of the enzymes. This may be explained by
the fact that both drugs are NMDA antagonists, and it is
possible that this specific effect is an important modulator
of the respiratory chain enzyme activities assessed in this
model.

Of note, AMA presents other mechanisms of action that
account for its neuroprotective effects, which include
inhibition of the release of microglial pro-inflammatory
factors such as tumor necrosis factor alpha (TNF-a) and
other interleukines, as well as an increase in the expression
of neurotrophic factors such as GDNF and BDNF in
astroglia58,59. In fact, it has been reported that the AMA-
induced NMDA receptor inhibition is independent of its
neuroprotective effects58. Moreover, mitochondrial effects
induced by memantine are mostly or entirely mediated
independent of NMDA channel modulation40. These data
emphasizing other AMA mechanisms of action justify its
use in preventing KET-induced effects, even though both
of these drugs are NMDA antagonists, and awaits further
experiments to clarify the relevance of these different
effects on its efficacy for the treatment of SZ.

Mitochondria dysfunction has been reported as a major
pathophysiological aspect of S$Z19,20,60. Likewise,
mitochondrial dysfunction has been investigated after KET
administration to rats31. A previous study from our group
has shown that KET treatment per se not only increased
complex | activity in the striatum, hippocampus and in
PFC, but also increased the activities of complex II-Ill in
the striatum, and of complex IV in the hippocampus and
striatum31. However, ourresultsshowed nosuch differences
between groups. We found a synergic effect of KET+AMA
in increasing the activities of complex | in the amygdala
and striatum, of complex Il and IV in the hippocampus
and striatum, and of complex II-1ll in the hippocampus and
in the amygdala. Treatment of KET per se only increased
complex Il activity in striatum, which was not seen in our
previous study31. Discrepancies between the studies might
be related to differences in the time between the last
injection, behavioral testing and decapitation. In summary,
the enhanced activity of mitochondrial respiratory chain
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complexes found in our samples may reflect an increased
energetic demand of cellular functions in these situations.

Such an increased energetic demand is also reflected by
our results on CK. CK reversibly catalyzes the conversion of
creatine and consumes ATP to create phosphocreatine and
ADP, thus acting to maintain energy homeostasis. Our results
showing increased CK activity in PFC, striatum and amygdala
are in accordance with a previous study*®, and suggest
a higher ATP demand on these tissues. Moreover, AMA
successfully prevented this increase in PFC and striatum, not
presenting this effect on amygdala. It is possible that this
AMA-induced prevention in CK activity may be associated
with the prevention of stereotypic movements, but so far we
cannot rule out other possible mechanisms by which it could
interfere on KET-induced effects.

Some limitations need to be taken into account when analyzing
our data. First of all, even though KET treatment has been
successfully employed as an animal model of SZ, it presents
obvious limitations when considering the complexity of the
disorder and the simplicity of mimicking it with an NMDA
antagonist administration. Nonetheless, such a limitation is
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